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Rezumat 

În lucrare este prezentată analiza cu privire la indicațiile și răspunsul date de autori la o problemă de 
cinematică din mecanică. 
 
Cuvinte cheie 

Ecuație algebrică, mecanică, probleme 
 

1. Introducere 
Problema luată în analiză a fost selectată din “ Probleme de mecanică fizică și acustică Ediția a II-a” apărută în 

Editura didactică și pedagogic, București, 1981, avându-i ca autori pe C. Plăvuțiu, A. Hristev, L. Georgescu, D. Borșan, 
V. Dima, C. Stănescu, L. Ionescu, R. Moldovan. 

Analiza a fost făcută asupra enunțului și a modului de rezolvare ținând cont de datele problemei puse la 
dispoziție. 
 

2. Enunțul, informațiile, datele, necunoscutele și cerutele unei probleme 
Un enunț este o afirmație sau o propoziție care transmite o informație sau o idée, de la conversații informale 

până la comunicarea profesională. 
În rezolvarea unei probleme un rol deosebit de important îl are enunțul. De formularea lui depinde înțelegerea 

conținutului și chiar modul și rapiditatea rezolvării problemei. 
Prezentarea corectă a datelor necesare calculului, a ordinii de determinare a necunoscutelor, executarea corecta a 

schemei (în cazul în care aceasta este necesară și poate fi realizată numai cu ajutorul datelor din enunț), folosirea 
unităților de măsură admise, constituie factori foarte importanți care ajută la înțelegerea cu ușurință a conținutului. 

Analizând enunțul problemei, în primul rând, trebuie să identificăm fenomenul sau fenomenele mecanice la care 
se referă problema pusă. 

Deci, formularea clară, concisă, completă și exactă care conține toate informațiile necesare rezolvării, datele și 
necunoscutele ce urmează să fie determinate constituie enunțul unei probleme. 

Rezolvarea problemelor este legată de căutarea, folosirea și prelucrarea informațiilor. Ca și conținut, totalitatea 
indicațiilor necesare pentru rezolvare constituie informațiile problemei. După modul lor de prezentare informațiile 
cuprinse în enunț pot fi: directe, indirede, ascunse și complexe. 

Mărimile despre care enunțul problemei ne inforrnează că au valori cunoscute (sau se cunoaște acest lucru) 
alcătuiesc datele problemei. 

Mărimile ce apar pe parcursul calculelor și despre care enunțul nu ne informează că au valori cunoscute 
constituie necunoscutele problemei respective. 

Mărimile ale căror valori sunt cerute într-o problemă constituie cerutele problemei; ele sunt în număr mai mic 
sau cel mult egal cu necunoscutele problemei, figurând evident printre acestea din urmă. 

La fel ca și în cazul datelor, ce fac parte de altfel din informațiile unei probleme, necunoscutele se pot prezenta 
într-o mare varietate. O parte din necunoscute pot fi cerute, altele pot să nu fie cerute în enunț, în schimb necesare 
pentru determinarea celor cerute. 

În general, la rezolvarea unei probleme în care prin enunț, nu se cere decât determiriarea anumitor mărimi 
(cerute), atenția se va îndrepta către acestea, eliminând pe parcursul rezolvării sistemului de ecuații ce conține toate 
necunoscutele problemei pe cele care nu sunt cerute în problema respectivă. 
 

3. Prezentarea problemei propuse pentru analiză 
Problema este cuprinsă în capitolul 1, Cinematica punctului material, subcapitolul 1.1. Mișcarea uniformă, cu 

numărul 1.1.5. 
În cele ce urmează prezentăm enunțul problemei propuse spre analiză. 
Dintr-un punct O pleacă un mobil cu viteza v1>0. După un timp t, la distanța s0 față de punctul O pleacă un alt 

mobil cu viteza v2>v1. Să se determine după cât timp τ și la ce distanță se vor întâlni cele două mobile. Să se  reprezinte 
grafic spațiile parcurse de mobile în funcție de timp. 

În continuare prezentăm conform autorilor indicațiile și răspunsul la problemă. 



(1.1.5. – din carte). Spațiul parcurs de mobilul cu viteza v1 este s1=v1t1, iar spațiul parcurs de mobilul cu viteza v2 
este s2=v2t2. Din grafic (fig. 1 (fig. 1.1.5R – din carte) se vede că s1=s2+s0, iar t1=t=t2+τ. Rezultă în final că: 
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4. Analiza problemei 

Din enunțul problemei timpul după care pleacă cel de-al doilea mobil 
viteza v2 este t nu τ notat ca în graficul din figura 1. 

De asemenea la cererea ca să se determine după cât timp τ se vor întâlni 
cele două mobile nu se specifică momentul inițial (de la plecarea primului mobil 
sau de la plecarea celui de-al doilea). 

În continuare ținând cont de enunțul problemei și de graficul din figura 1, 
t1=t nu poate fi timpul după care se vor întâlni cele două mobile. Confom 
enunțului și luând în considerare și graficul din figură timpul de întâlnire 
considerat de la plecarea primului mobil trebuie să fie τ, deci t1=τ și τ=t+t2 sau 
t2=τ-t. 

 
Fig. 1. Figura 1.1.5R din carte 

Asfel luând în considerare cele menționate mai sus vom avea pentru cele două mobile aflate în mișcare uniformă 
relațiile: 

- pentru primul mobil: 
1 1 1 1s v t v τ= = ,                                                                               (3) 

- pentru al doilea mobil: 
( )2 2 2 2s v t v tτ= = − ,                                                                           (3) 

și relația dintre spații: 
1 2 0s s s= + ,                                                                                 (4) 

Din (2), (3) și (4) rezultă: 
( )1 0 2v s v tτ τ= + − ,                                                                          (5) 

de unde: 
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Distanța la care se vor întâlnii mobilele este: 
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Dacă am considera pe τ ca timp de întâlnire de la plecarea celui de al doilea mobil am avea relațiil 
- pentru primul mobil: 

( )1 1 1 1s v t v t τ= = + ,                                                                        (8) 
- pentru al doilea mobil: 

2 2 2 2s v t v τ= = ,                                                                           (9) 
de unde: 
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Dar v1t=s0 și atunci conform (10) τ ar fi egal cu zero (s0-s0=0) ceea ce este imposibil, adică s2 ar fi de asemenea 
egal cu zero. 
 
 

Concluzii 
În exemplul analizat am arătat de ce sunt importante formularea clară, concisă, completă și exactă care conține 

toate informațiile necesare rezolvării problemei, rezolvarea problemei fiind legată de căutarea, folosirea și prelucrarea 
informațiilor (totalitatea indicațiilor necesare pentru rezolvare). La baza rezolvării unei probleme stau informațiile 
cuprinse în enunt. 

De asemenea, de o deosebită importanță este verificarea și interpretarea rezultatelor obținute. 
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Rezumat 

Lucrarea abordează o serie de cercetări care vizează identificarea unei soluții pentru modernizarea moletelor 
turnului de extracție din salina de la Slănic Prahova. 

Având acest obiectiv în vedere și pornind de la constatarea că soluția anterioară este uzată, a fost concepută și 
proiectată o nouă variantă, care să poată fi aplicată pe structura existentă a turnului de extracție fără modificări 
semnificative. Pentru analiza și proiectarea asistată au fost utilizate programe software specializate, capabile să ofere o 
interpretare corectă a rezultatelor, premergător fabricări acestora. 

Mașinile miniere sunt sisteme industriale de mare complexitate și importanță în procesul de extragere a 
substanțelor minerale utile. Această categorie de instalații constituie un factor esențial în funcționarea exploatărilor 
miniere, iar procesele de modernizare, necesare pentru menținerea și exploatarea performanțelor tehnice și economice, 
reprezintă singura opțiune viabilă pentru continuarea activităților de extracție. Din această perspectivă, menținerea 
caracteristicilor de producție la un nivel ridicat, respectând în același timp cerințele de siguranță și costuri minime de 
fabricație, transformă întreținerea într-o prioritate. 

Lucrarea, de asemenea originală, propune o metodologie de lucru și de abordare aplicabilă în general și în alte 
situații similare. 
Cuvinte cheie 
 Moletă, axe moletă, rulmenți, modelare 3D, analiză 3D. 

 
1. Introducere [1], [7], 

Moletele de deviere sunt utilizate în cazul în care instalația este echipată cu un dispozitiv de înfășurare a 
cablului, amplasat la sol, în timp ce acestea sunt situate pe turnului de extracție. 

Moletele de deviere au rolul de a apropia ramurile cablului între ele și de a crește unghiul de înfășurare al 
cablului, într-un interval cuprins între 45° și 90°, în funcție de cerințele specifice. 

Formele constructive ale moletelor diferă în funcție de profilul utilizat pentru realizarea spițelor. Moletele de 
deviere și arborele acesteia se deplasează, prin intermediul rulmenților de alunecare sau a celor cu role, pe structura 
turnului de extracție. 

Instalațiile de extracție din industria minieră sunt sisteme industriale de o complexitate și importanță ridicată, 
utilizate în procesul tehnologic de extragere a substanțelor minerale utile. Această categorie de echipamente constituie 
un factor esențial în funcționarea unităților miniere. Procesele de modernizare, menite să asigure continuitatea 
exploatării și să crească performanțele tehnice și economice, reprezintă în prezent singura alternativă viabilă pentru 
desfășurarea în continuare a proceselor de extracție. Menținerea funcționalității acestora, cu respectarea normelor de 
siguranță și a costurilor economice minime, constituie o prioritate. 

În acest context, pornind de la constatarea că motorul de extracție din salina Slănic Prahova prezintă probleme 
serioase de degradare a moletelor de deviere amplasate în turnul de extracție, am procedat la proiectarea și conceperea 
unei alternative moderne, care să poată fi implementată fără a necesita modificări ale structurii constructive a turnului 
sau ale instalației de extracție. 

 
2. Soluție constructivă și funcțională pentru moletele cu diametrul de 2.500 mm [1], [7], 

Moleta modernizată, cu diametrul de 2.500 mm, este alcătuită din două semi-molete, asamblate între ele prin 
știfturi de centrare și șuruburi. 

Semi-moleta este realizat din tablă deformabilă prin curbare, iar canalul moletei este confecționat din oțel, într-o 
construcție metalică sudată, iar spițele sunt realizate din profil laminat tip U10, asamblate prin sudură. 

Acest tip de moletă, fabricată prin sudare, prezintă un comportament bun în exploatare, datorită simplității 
construcției și fabricației, precum și o masă și un moment de inerție reduse. 

Pe baza documentației de fabricație a roții tăietoare vechi, cu diametrul de 2.500 mm, utilizată la puțul minei 
Unirea – Slănic, precum și a tehnologiilor actuale de fabricare a moletelor, a fost elaborată documentația de cercetare în 
vederea modernizării acestei moletelor vechi și deteriorate. 

Soluția constructivă a moletelor de 2.500 mm este prezentată în Fig.1. 
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Fig. 1. Figura 1. Soluția constructivă pentru noua moletă de 2.500 mm 
 
unde: 1 – moleta nouă de 2.500 mm; 2 – arbore; 3 – pană înclinată 45x22x350; 4 – lagăr stânga; 5 – lagăr dreapta; 6 – 
placă de reazem pentru lagăr; 7 – șurub special cu cap pătrat M27x100; 8 – guler plat M27; 9 – piuliță șurub M27; 10 – 
grindă în profil I30. 

În cazul acestei moletei, care prezintă un raport între lățime și diametru mai mic de 1/10 (195 / 2.630 = 0,074), 
este necesară doar echilibrarea statică. 

Moleta montată pe arbore sprijină fusurile arborelui pe două prisme dispuse orizontal și se rotește din 60 în 60 de 
grade. 

Dacă, după rotire, moleta revine constant în aceeași poziție, aceasta este dezechilibrată, centrul de greutate 
aflându-se sub axa de rotație în acea poziție. Pentru echilibrarea sa, este necesară adăugarea unei mase în partea 
superioară a inelului mantalei sau îndepărtarea de material (prin frezare sau tăiere) în partea inferioară a acestuia. 

Aceste operațiuni se repetă progresiv, până când, în fiecare poziție de rotație, moleta nu-și mai modifică poziția 
sub influența centrului de greutate, ceea ce înseamnă că centrul de greutate se află pe axa de rotație. [5] 

Figura 2 prezintă soluția constructivă a arborelui noii molete, realizat din oțel OLC 45 și tratat termic pentru 
îmbunătățirea proprietăților (călire + revenire la temperatură înaltă), până la o duritate de 30 … 35 HRC. [3] 
 

 
 

Fig. 2. Soluția constructivă a arborelui moletei noi 2.500 mm 
 
În fig. 3. Este prezentată soluția constructivă a lagărului cu rulmenți, unde: 1 – suport inferior pentru lagăr; 2 – 

suport superior pentru lagăr; 3 – știft cilindric B16x40; 4 – știft de îmbinare M20x180; 5 – guler de blocare M20; 6 – 
piuliță M20; 7 – capac complet; 8 – șurub M10x25; 9 – guler Grower A10; 10 – lagăr radial-oscilant cu bile, compus 
din doi rulmenți radiali cu role sferice tip 22224; 11 – capac de trecere; 12 – manșetă B130x160x12 din cauciuc NBR 
70Sh; 13 – inel O-ring 207x3.5 din cauciuc NBR 70Sh; 14 – inel de ridicare M12; 15 – dispozitiv de ungere UA3. 

 



 
Fig. 3. Soluția constructivă a lagărului cu rulmenți  

 
Lagărele moletelor sunt echipate cu lagăre radial-oscilante cu bile, compuse din doi rulmenți cu role sferice tip 

22224. 
Aceste lagăre sunt mai economice și mai sigure în exploatare, având un coeficient de frecare mai redus și o 

durată de viață mai mare comparativ cu clasicele lagăre de alunecare. [6] 
Figura 4 prezintă secțiunile geometrice a canalului de cablu pentru moletă, evidențiind forma și dimensiunile 

geometrice stabilite conform lucrărilor de specialitate. 
Figura 4 b) ilustrează forma și dimensiunile geometrice ale noii molete propuse de noi pentru puțul Minei 

Unirea, aparținând salinei Slănic Prahova.  
 

 
 

Fig. 4. Soluția constructivă, dimensională și geometrică a moletelor  
 
Pe baza documentației de fabricație elaborată pentru noua moletă destinată puțului Minei Unirea, aparținând 

salinei Slănic Prahova, au fost stabilite caracteristicile tehnice ale acesteia și comparate cu valorile moletei vechi, 
precum și cu cele recomandate de lucrările de specialitate; aceste date sunt prezentate în Tabelul 1.  

 
Tabelul 1. Caracteristicile tehnice ale moletei noi de 2.500 mm 

 

Nr. Caracteristici tehnice  

Notațiile 

din  

Fig. 1 

Unitatea de 
măsură 

Valorile 
moletei noi 

Valorile 
moletei vechi 

Valori 
recomandate 

1. Diametrul cablului d mm 28 28 - 
2. Diametrul moletei Dm mm 2.500 2.500 ≥ 80*28=2.240 
3. Raza de curbură a canalului 

de cablu al moletei  
r mm 15 15 ≥ 0.53*28= 

14,84 
4. Adâncimea canalului moletei h mm 79 71 ≥ 1.5*28=42 
5. Grosimea peretelui moletei a mm 9,4 15 ≥ 28/3+3=12,3 



6. Grosimea porțiunii pline a 
moletei de sub canal 

b mm 41 30 ≥ 28/3+10=19,3 

7. Unghiul de deschidere al 
canalului moletei 

2 grade 42 42 2 = 40 … 45 

8. Diametrul exterior al moletei De mm 2.630 2.630 ≥Dm-
d+2h=2.264 

9. Lățimea bazei canalului de 
cablu 

l+2a mm 100 110 - 

10. Lățimea maximă a moletei (în 
zona șuruburilor) 

- mm 290 345 - 

11. Masa moletei - kg 966,78 1.233,2 Cât mai scăzut 
12. Momentul de girație al 

moletei  
- kg*m2 475,88 993,05 Cât mai scăzut 

 
Tabelul de mai sus arată că, în cazul unei reduceri a masei cu 21,6 %, are loc o scădere a momentului de inerție 

cu 52,1 %, fapt ce îmbunătățește funcționarea mașinii de extracție atât la pornire, cât și la oprire. 
În comparație cu recomandările lucrărilor de specialitate, lățimea marginii peretelui canalului a fost redusă, în 

timp ce adâncimea canalului a fost mărită. 
Acest compromis a fost impus de grosimea tablei de 100 mm utilizată pentru fabricarea moletei, precum și de 

necesitatea creșterii adâncimii canalului pentru a îmbunătăți condițiile de înfășurare a cablului, prevenind astfel ieșirea 
sau alunecarea acestuia din canal în cazul frânării bruște a coliviei aflată în mișcare.  

 
3.  Extras din breviarul de calcul pentru noua soluție a moletei de 2.500 mm 

În vederea stabilirii condițiilor de funcționare ale noilor molete, s-a păstrat același model de calcul utilizat pentru 
determinarea solicitărilor la care au fost supuse modelele vechi. 

Pe baza relațiilor de calcul oferite de literatura de specialitate, s-a determinat modul în care apare uzura prin 
aderență, cauzată de rostogolirea și alunecarea cablului pe peretele canalului roții tăietoare. 

Rezultatele arată că, în cazul unei presiuni de contact cablu-perete de 1,01 N/mm², pentru a îndepărta un volum 
de 2,3 dm³ de oțel din peretele canalului inelului moletei, în condițiile transportului a 2.000 de persoane pe săptămână, 
este necesară o durată de funcționare de 35,2 ani. 

- Numărul de ani de funcționare al rulmenților lagărului nou: 

= =35. 203 ani 

- Reacțiuni în punctele cadrului, în interiorul spițelor, în N: 

R=0.5 1=1.905  
- Modul de rezistență al moletei: 

 

- Presiunea de contact maximă pe unitatea de lungime a circumferinței moletei, în N/ : 

= =321.55 

- Presiunea medie pe suprafața medie din unitatea de suprafață a circumferinței moletei, în N/ : 

=  =0.968 

 
4. Modelarea 3D a moletei și analiza statică cu metoda elementului finit 

După realizarea analizei tehnico-economice optime a moletei, conform lucrărilor de specialitate, s-a efectuat 
modelarea 3D utilizând software-ul de proiectare asistată SolidWorks. După proiectarea 3D, moleta a fost supusă 
încărcării statice cu forțele determinate în referatul de calcul, în vederea analizei prin metoda elementelor finite și a 
studiului cinematic. 

Forțele de încărcare sunt determinate de greutatea cuștii, a cablului, a dispozitivului de fixare a cablului și de 
greutatea maximă transportată de cușcă, respectiv 8 persoane. După analiza elementelor care determină forțele de 
solicitare a moletei, a fost inițiată simularea statică prin intermediul a patru cazuri distincte. 

Primul caz implică o forță maximă de-a lungul canalului roții tăietoare de 28.028 N, care include greutatea cuștii, 
greutatea cablului pe metru liniar și dispozitivul de fixare – acest caz reprezintă ridicarea cuștii goale la suprafață, cu o 
lungime a cablului de 20 metri. 

Al doilea caz prezintă cușca goală, iar dispozitivul de fixare și cablul generează o forță de 33.706 N, cu o 



lungime maximă a cablului de 265 metri, celelalte elemente rămânând constante. 
Al treilea caz este definit printr-o forță de 36.028 N, ce reprezintă greutatea cuștii încărcate cu 8 persoane, 

dispozitivul de fixare și cablul cu o lungime minimă de 20 metri. 
Cazul al patrulea implică o forță maximă de 39.912 N, reprezentând sarcina maximă suportată de moletă în 

exploatare – adică greutatea cuștii încărcate cu 8 persoane, dispozitivul de fixare și cablul cu lungimea maximă de 265 
metri. În toate cele patru cazuri, analiza cu metoda elementelor finite a luat în calcul și o presiune constantă pe pereții 
canalului roții tăietoare de 1,007 N, precum și accelerația gravitațională de 9,8 m/s². 

Figurile 5 și 6 prezintă rezultatele grafice ale analizei statice cu metoda elementelor finite. Pentru ilustrare au 
fost selectate două cazuri: cazul minim (Fig. 5), cu o forță de 28.028 N, și cazul maxim (Fig. 6), cu o forță de 39.912 N. 
 

         
Fig. 5. Forța minimă aplicată moletei în cadrul simulării  Fig. 6. Forța maximă aplicată moletei în cadrul simulării 

 
5. Concluzii 

Eliminarea benzii de rulare din canalul moletei simplifică construcția și crește durata de viață a moletei. Moleta 
realizată din construcție sudată este mai ușor de fabricat și are un cost de producție mai redus comparativ cu cea turnată, 
prezentând un comportament superior în exploatare. 

Reducerea masei cu 21,6% și a momentului de inerție cu 52,1% contribuie la îmbunătățirea condițiilor de 
exploatare ale mașinii de extracție la pornire și la oprire, precum și la creșterea coeficientului de siguranță. Rulmenții cu 
bile sunt mai economici și mai siguri în exploatare, prezentând un coeficient de frecare mai redus și o durată de viață 
mai mare decât lagărele cu alunecare. 

Toate componentele moletei au fost verificate pentru o sarcină de rupere a cablului de 355 kN, iar coeficienții de 
siguranță obținuți au avut valori mai mari de 1,1, fiind comparați cu limita de curgere a oțelului. 

Rotirea și torsiunea turnului cauzate de alunecările de teren impun verificarea continuă a poziționării moletelor 
față de mașina de extracție și a unghiului de deviere al cablului în timpul înfășurării pe moletă. 

Soluțiile constructive rezultate în urma proiectării moletelor modernizate au fost proiectate și analizate cu 
ajutorul software-ului de proiectare, iar rezultatele au demonstrat că solicitările din structura nou concepută și realizată, 
nu depășesc valorile admisibile. 
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Rezumat 

În lucrare sunt prezentate unele aspecte privind proprietățile câmpului de viteze în mișcarea generală a rigidului 
din cinematică. 

 
Cuvinte cheie 

Coliniaritate, puncte materiale 
 
 

1. Introducere 
Cinematica, ca parte a mecanicii, studiază mişcarea mecanică, fără a ţine seama de mase, de forţe şi de momente, 

adică urmăreşte în exclusivitate aspectul geometric al acesteia. 
Instrumentul de rezolvare a oricărei probleme de mecanică îl constituie aplicarea uneia sau mai multor formule 

(în cazuri simple) sau a uneia sau mai multor metode (în cazuri mai complicate). 
Trebuie precizat faptul că cunoașterea, însușirea și aplicarea corectă a unei metode de calcul la rezolvarea unei 

probleme constituie o chestiune de experiență, care se dobândește pe baza rezolvării unui număr considerabil de 
probleme. 

Cunoașterea aprofundată a metodelor de rezolvare conduce la o rezolvare rapidă și sigură a problemelor 
indiferent de gradul lor de dificultate. 

De asemenea în mecanică, cu precădere în cinematică, ca și în geometrie, se găsesc aspecte în care se face 
referire la proprietatea de coliniaritate, atât în teorie cât și în aplicații. 

În cele ce urmează se vor prezenta aspecte privind metoda proprietății de coliniaritate, tratată pe un exemplu 
dintr-o problemă aplicativă. 

 
2. Proprietatea de coliniaritate 

Coliniaritatea este, în geometrie, proprietatea unui număr mai mare de două puncte de a aparține aceleiași drepte. 
Mai multe puncte necoliniare sunt puncte ce nu pot aparține aceleiași drepte. 
Se poate demonstra și folosind vectori și numere complexe, similar cu  

coplanaritatea. 
Dintre metodele specifice pentru demonstrarea coliniarității folosite în geometrie amintim următoarele metode. 
Demonstrarea coliniarității cu ajutorul unghiului alungit (unghiuri suplementare). 

Dacă A și C sunt situate de o parte si de alta a dreptei BD și m(<ABD)+m(<DBC)=1800, atunci punctele A, B și C sunt 
coliniare (fig. 1). 

Demonstrarea coliniarității utilizând reciproca teoremei unghiurilor opuse la vârf. 
Dacă punctul B este situat pe dreapta DE, iar A și C sunt de o parte și de alta a dreptei DE și <ABD = <CBE, atunci 
punctele A, B, C sunt coliniare (fig. 2). 

Demonstrarea coliniarității prin identificarea unei drepte ce conține punctele respective. 
Pentru a arăta ca punctele A, B, C sunt coliniare se identifică o dreaptă căreia ele să-i aparțină. 

 
Fig. 1. Unghiuri suplementare          Fig. 2. Unghiuri opuse la vârf 

 
Condiția de coliniaritate a trei puncte A(x1,y1), B(x2,y2), C(x3,y3) se obține dacă punem condiția ca punctul 

C(x3,y3) să verifice ecuația dreptei AB, adică: 
3 1 3 1

2 1 2 1

y y x x
y y x x
− −

=
− −

,                                                                              (1) 



Condiția de coliniaritate a celor 3 puncte se mai poate scrie sub formă de determinant: 
1 1

2 2

3 3

1
1
1

x y
x y
x y

,                                                                                 (2) 

Demonstrarea coliniarității punctelor folosind vectorii. 
Doi vectori sunt coliniari dacă au aceeași direcție. Acest lucru se întâmplă în cazul în care ambii vectori sunt 

nenuli și dreptele lor suport sunt paralele sau coincid și cazul în care unul dintre vectori este nul. Paralelismul vectorilor 
reprezintă un caz particular al coliniarității lor, lucru explicabil prin faptul că vectorii liberi nu au o poziție fixă și pot fi 
translatați în orice punct al planului. 

Demonstrarea coliniarității punctelor folosind aplicațiile numerelor complexe în geometrie. 
Dacă punctele A, B, C au respectiv afixele zA, zB, zC, atunci A, B, C sunt coliniare dacă și numai dacă 

( ) ( )/ *B A C Az z z z− − ∈ . 
Demonstrarea coliniarității punctelor utilizând proprietățile funcției arie: dacă C Int<(AOB) și A[AOB] = A[AOC] + 

A[BOC], atunci A, B, C sunt coliniare (se poate folosii și la patrulatere). 
Demonstrarea coliniarității punctelor folosind asemănarea triunghiurilor (sau patrulaterelor): fie N între B și C, 

dacă MN AB  și ABC MBN∆ ∆ , atunci B, N, C sunt coliniare. 
 

3. Aplicarea condiției de coliniaritate la trei puncte de pe aceeași dreaptă 
În cele ce urmează vom prezenta o aplicație în care se întrebuințează metoda 

mișcării inverse și condiția de coliniaritate aplicată la trei puncte ce se deplasează pe 
traiectorii diferite și sunt obligate să fie în permanență pe aceeași dreaptă. 

Se consideră următoarea problemă: 
Trei pomi sunt plantați pe un rând unul după altul, echidistant. Înălțimile 

acestora sunt h1, h2 și respectiv h3 , cu 3 2 1 3h h h  , iar vitezele lor de creștere 
anuale (considerate pentru fiecare constante!) sunt v1, v2 și respectiv v3 cu 

1 3 2v v v  . După câți ani vârfurile pomilor vor fi coliniare? 
De asemenea pentru soluționarea problemei va trebui să admitem neglijarea 

accelerației gravitaționale, deoarece creșterea pomilor este lentă. 
O primă rezolvare o vom face folosind produsul vectorial al vectorilor 1 1A B   

 
Fig. 3. Cei trei pomi 

și 1 1A C  (determinați de punctele A1, B1, C1, până unde au crescut pomi) punând condiția ca acesta să fie nul. 
Astfel, din figura 4, avem : 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

AA A B AB A B AB AA

AA A C AC A C AC AA

+ = ⇒ = −

+ = ⇒ = −
,                            (3) 

dar: 

1 1

1 1

AB AB BB

AC AC CC

= +

= +
,                                                (4) 

deci: 
( ) ( ) ( )
( ) ( ) ( )

1 1 2 2 1 1 2 1 2 1

1 1 3 3 1 1 3 1 3 12 2

A B li h v t j h v t j li h h v t v t j

A C li h v t j h v t j li h h v t v t j

= + + − + = + − + −

= + + − + = + − + −
,          (5) 

Punem condiția:  
Fig. 4. Vectorii determinați 

1 1 1 1 2 1 2 1

3 1 3 1

0 0
2 0

i j k
A B A C l h h v t v t

l h h v t v t
× = − + − =

− + −
,                                                          (6) 

Dezvoltând determinantul și egalând cu zero relația obținută unde rezultă: 

( ) 2 1 3
3 1 2 2 1 3

1 3 2

2
2 2

2
h h h

t v v v h h h t
v v v

− −
+ − = − − ⇒ =

+ −
,                                                (7) 

În continuare punem condiția ca vectorii 1 1A B  și 1 1A C  sunt colineari dacă și numai dacă au coordonatele 
(proiecțiile pe axe) proporționale, adică, deci dacă și numai dacă există Rα ∈  astfel încât: 

1 1 1 1A B A Cα= ,                                                                              (8) 
Dar: 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 11 1 11 B A B A C A C AA B A C x x i y y j x x i y y jα α α α α= ⇔ − + − = − + − , 
de unde: 



( ) ( ) ( ) ( )1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0, 0

B A C A B A C A

B A B A
C A C A

C A C A

x x x x y y y y

x x y y
cu x x y y

x x y y

α α− = − − = − ⇔

− −
⇔ = − ≠ − ≠

− −

,                                        (9) 

Astfel conform figurii 4, pentru punctele A1, B1 și C1 avem: 
( )
( )
( )

1 1 1

1 2 2

1 3 3

0

2

AA i h v t j

AB li h v t j

AC li h v t j

= + +

= + +

= + +

,                                                                    (10) 

Rezultă, deci: 
( )
( )

1 1 1 1

1 1 1 1

2 2 1 1 2 1 3

3 3 1 1 1 3 2

2
2 2

B A B A

C A C A

x x y y h v t h v t h h hl t
x x y y l h v t h v t v v v

− − + − + − −
= = = ⇒ =

− − + − + + −
,                                  (11) 

Se observă că relația (11) este identică cu relația (7). 
În continuare vom determina relația de coliniaritate pentru punctele M1, M2 și 

M3 folosind numerele complexe. 
Prin asocierea z = x + iy, M(x,y), mulțimii R a numerelor reale îi corespunde 

axa Ox numită, în acest context, axa reală, iar mulțimii iR a numerelor imaginare, axa 
Oy, numită axa imaginară. 

Planul ale cărui puncte se identifică cu numerele complexe prin funcția g o f, 
definită mai înainte, se numește planul complex. 

Afixele punctelor A1, B1, și C1, conform figurii 5 sunt z1, z2, z3. Punctele sunt 
coliniare dacă și numai dacă (z3-z1)/(z3-z2) aparține R. 

Conform figurii 5 și a relațiilor cinematice din mecanică, avem că: 
( ) ( )
( )

1 1 1 1 1 1 2 2 2 2 2 2

3 3 3 3 3 3

, 0 ; ,

, 2

z x iy z i h v t z x iy z l i h v t

z x iy z l i h v t

= + = + + = + = + +

= + = + +
,         (12)  

Fig. 5. Afixele pentru A1, B1, C1 

( )
( )

( )
( )

( )
( )

( )
( )

3 3 1 1 3 1 3 13 1

2 1 2 2 1 1 2 1 2 1

3 3 1 1 3 1 3 1

2 1 2 12 2 1 1

2 0 2
0

x iy x iy x x i y yz z
z z x iy x iy x x i y y

l i h v t h v t l i h h v t v t
l i h h v t v tl i h v t h v t

λ

+ − + − + −−
= = ⇔

− + − + − + −

− + + − +  + − + − ⇔ = =
+ − + −− + + − +  

,                               (13) 

unde *λ ∈ . 
Astfel vom avea: 

( )
( ) ( ) ( )

( ) ( )

3 1 3 1
3 1 3 1 2 1 2 1

2 1 2 1

2 1 2 1 3 1 3 1

2
2

2

l i h h v t v t
l i h h v t v t l i h h v t v t

l i h h v t v t

l l i h h v t v t i h h v t v t

λ λ

λ λ

+ − + −
= ⇔ + − + − = + − + −  + − + −

⇔ − = − + − − − + −

,                    (14) 

Pentru ca ultima relație din (14), ( ) ( )2 1 2 1 3 1 3 12l l i h h v t v t i h h v t v tλ λ− = − + − − − + − , trebuie să avem: 
2 0l lλ− =  și ( ) ( )2 1 2 1 3 1 3 1i h h v t v t i h h v t v tλ − + − − − + − , de unde va rezulta: 

2λ =    și   3 1 3 1

2 1 2 1

h h v t v t
h h v t v t

λ
− + −

=
− + −

,                                                            (15) 

Egalând cele două ecuații din (15) rezultă: 
 

( )3 1 3 1 2 1 3
3 1 2 2 1 3

2 1 2 1 3 1 2

2
2 2 2

2
h h v t v t h h h

t v v v h h h t
h h v t v t v v v
− + − − −

= ⇒ + − = − − ⇒ =
− + − + −

,                 (16) 

Relația (16) este identică cu relația (7). 
Vom considera în continuare condiția coliniarității cu ajutorul unghiului 

alungit (unghiuri suplementare). Dacă A1 și C1 sunt situate de o parte și de alta a 
dreptei AB1 și m(<A1B1A)+m(<AB1C1) = 1800 (fig. 6), atunci punctele A1, B1, și C1, 
sunt coliniare. 

Luând în considerare figura 6, vom face următoarele notații: 
1 1 1 1

1 1 1 1 1 2

1 1 1 1 1 2

, ,
,
,

AA B AC B
A AB B AC
A B A AB C

α β
ϕ ϕ
δ δ

= =
= =
= =







,                                   (17) 

Din 1 1AA B∆  rezultă că: 
0

1 1 180α δ ϕ+ + = ,                                            (18) 
 

Fig. 6. Cazul unghiului alungit 



Din 1 1AB C∆  rezultă că: 
0

2 2 180β δ ϕ+ + = ,                                                                         (19) 
Din 1 1AA C∆  rezultă că: 

0
1 2 180α β ϕ ϕ+ + + = ,                                                                       (20) 

Adunând relațiile (18) și (19), rezultă: 

( )

0 0
1 1 2 2

0 0
1 2 1 2

0 0
1 2

180 180
180 180

180 180

α δ ϕ β δ ϕ

δ δ α β ϕ ϕ

δ δ

+ + + + + = + ⇒

⇒ + = + − + + + ⇒

⇒ + = + 0180− 0
1 2 180δ δ⇒ + =

,                                       (21) 

Atunci ultima relație din (21) devine: 
0

1 1 1 1 180A B A AB C+ =  ,                                                                   (22) 

De unde rezultă că punctele A1, B1 și C1 sunt coliniare și atunci vectorii 1 1A B  

și 1 1A C  fiind coliniari produsul lor vectorial va fi nul. 
În continuare utilizăm asemănarea triunghiurilor. Ducem dreptele paralele la 

dreapta ABC prin B1 și respectiv C1 (fig. 7). Se obțin triunghiurile A/A1B1 și B/B1C1, și 
din condiția ca ele să fie asemenea rezultă: 

( )
( )

1 1 2 2
1 1 2 2 2 2 3 3

2 2 3 3

2 1 3
1 2 2 3 2 3 2 1

1 3 2

1

2
2

h v t h v t l h v t h v t h v t h v t
h v t h v t l

h h h
v t v t v t v t h h h h t

v v v

+ − +
= = ⇒ + − − = + − − ⇒

+ − +

− −
⇒ − − + = − + − ⇒ =

+ −

,    (23) 

Rezultă că punctele A1, B1 și C1 sunt coliniare. 
În final utilizăm proprietățile funcției arie (fig. 8). Punem condiția ca: 

 
Fig. 7. Condiția de asemănar

[ ] [ ] [ ]1 1 1 1 1 1Aria AA C C Aria AA B B Aria BB C C∆ = ∆ + ∆ ,            (24) 
Astfel avem: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 1 3 3

1 1 2 2 2 2 3 3

1 1 3 3

1 1 2 2 2 2 3 3

2
2

2
2 2

2 2

h v t h v t l

h v t h v t l h v t h v t l
l

h v t h v t

h v t h v t h v t h v t

+ + +   =

+ + +  + + + = + ⋅ ⇒

⇒ + + + =

= + + + + + + +

,              (25) 

În urma calculelor efectuate rezultă: 
2 1 3

1 3 2

2
2

h h h
t

v v v
− −

=
+ −

,                                            (26) 

 
Fig. 8. Trapezele 

 
 

Concluzii 
Interdisciplinaritatea este o cooperare între discipline diferite din aceeași arie curiculară, privind un anumit 

fenomen, proces a cărui complexitate poate fi demonstrată, explicată, rezolvată numai prin acţiunea a mai multor 
factori. 

Interdisciplinaritatea presupune abordarea conţinuturilor complexe având ca țel formarea unei imagini unitare 
asupra unei anumite teme. Aceasta implică combinarea a două sau mai multe discipline academice într-o singură 
activitate. Astfel, acumulezi cunoștințe noi pe mai multe domenii simultan. 

Mecanica este dependentă de matematică și putem să ne dăm seama de acest lucru din faptul că nu putem 
rezolva aproape nicio problemă de mecanică fără matematică. 

În lucrarea s-a arătat prin exemplul considerat legătura strânsă dintre cele două discipline fundamentale, 
matematica și mecanica. 
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Rezumat 

În lucrare se prezintă demonstrarea teoremei lui Bernard Lamy (cunoscut[ sub de numirea de Teorema lui Lami) 
precum și exemple privind aplicarea acesteia la rezolvarea în unele probleme de statică din mecanică  
Cuvinte cheie 

Teoremă, Lamy, statică, mecanică 
 

1. Introducere 
Teorema lui Bernard Lamy (cunoscut și sub numemele de Bernard Lami) este 

o teoremă simplă și utilă în statică, un capitol al mecanicii care se ocupă cu forțele și 
efectele acestora în timp ce obiectele sunt în repaus. Este numit după omul de știință 
francez Bernard Lamy. 

Teorema afirmă că dacă trei forțe care acționează într-un punct sunt în 
echilibru (vezi figura 1), atunci fiecare forță este proporțională cu sinusul unghiului 
dintre celelalte două forțe. 

Din punct de vedere matematic, poate fi reprezentat astfel: 
31 2

sin sin sin
FF F

α β γ
= = ,                                      (1) 

unde F1, F2 și F3 sunt mărimile forțelor și α, β și γ sunt unghiurile dintre forțe. 

 
Fig. 1. Forțe concurente în 

echilibru 
 

2. Teorema lui Bernard Lamy 
În continuare vom arăta că, dacă sub acțiunea a trei forțe concurente un 

corp rămâne în echilibru, fiecare forță este direct proporțională, in modul, cu 
sinusul unghiului dintre celelalte două forțe. 

Vom considera trei forțe P , Q  și R ce acționează asupra unui corp O. 
Echilibrul corpului presupune satisfacerea condiției: 

0P Q R+ + = ,                                             (2) 
adică situația din figura 2 (corpul fiind O) cu: 

P Q R+ = ,                                            (3) 
Scriem teorema sinusurilor în triunghiul COD (fig.2): 

 
Fig. 2. Echilibrul corpului

( )
sin sin sin

QP R const K
α β γ
= = = = ,                                                       (4) 

Astfel: 
sin , sin , sinP K Q K R Kα β γ= = = ,                                                    (5) 

cu (vezi figura 2): 
( ) ( )
( ) ( )
( ) ( )

0

0

0

sin sin 180 sin ,

sin sin 180 sin ,

sin sin 180 sin ,

Q R

P R

P Q

α α

β β

γ γ

= − =

= − =

= − =







,                                                      (6) 

 
3. Exemple privind aplicarea teoremei lui Lamy la rezolvarea unor probleme de statică 

În continuare vom prezenta exemple de probleme în rezolvarea cărora s-a întrbuințat teorema lui Lamy. La unele 
dintre probleme rezolvarea s-a făcut și cu ajutorul condițiilor “ clasice” de echilibru din statică și cu teorema lui Lamy. 
Acest lucru s-a făcut pentru a pute compara care dintre metodele folosite la rezolvarea acestor probleme este mai 
eficientă. 

 
Problema 1 
O particulă este așezată pe o planșetă aspră, înclinată sub unghiul α față de orizontală. Asupra ei acționează sub 



unghiul β față de dreapta CD (linia de cea mai mare pantă), o forță F  paralelă cu planul planșetei, ca în figura 3. 
Cunoscând coeficientul de frecare dintre corp și planșetă μ și știind că 

echilibrul realizat este ,,la limită", se cere să se determine direcția în care va începe să 
se miște particula. 

Rezolvare: 
Dacă corpul are greutatea G, reacțiunea normală pe planișetă în A este: 

cosN G α= ,                                                (7) 
Pe direcția AD actionează forța Gsinα.  
Să presupunem că forța de frecare: 

cosfF N Gµ µ α= = ,                                       (8) 
acționează ca în figura 3, pe direcția AB, adică sub unghiul θ față de DC. Particula va 
începe să se miște pe direcția BA.  

 
Fig. 3. Poziția particulei 

Cele trei forțe fiind concurente în A putem aplica teorema lui Lamy: 

( )
sin

sin sin sin
N G Fµ α
β β θ θ
= =

+
,                                                                        (9) 

De aici: 

( ) sinsin tgα β
β θ

µ
⋅

+ = ,                                                                        (10) 

relație care îl determină pe θ. 
 

Problema 2 
Un punct material A de greutate G  se află 

pe un plan înclinat ce formează unghiul α cu 
orizontala. Punctul este legat cu un fir de punctul 
fix B, iar firul face unghiul β cu planul înclinat 
(fig. 4, a). Se cere să se determine forțele de 
legatură ce acționează punctul material în poziția 
dată, la echilibru de repaus (fig. 4, b). 

Rezolvare: 
Vom rezolva problema punând condițiile 

de echilibru din statică. Condiția de echilibru la 
repaus este de forma: 

 
a)                                         b) 

Fig. 4. Punctul material pe plan și forțele la care este supus 

0T G N+ + = ,                                                                             (11) 
iar în formulare scalară (a proiecțiilor pe axele sistemului de referință ales) averm: 

0; cos sin 0

0; sin cos 0
i

i

X T G

Y T G N

β α

β α

= − =

= − + =
∑
∑

,                                                          (12) 

de unde prin rezolvarea sistemului (12) obținem: 

( )

sincos sin 0
cos

sin cos 0
cos sin

sincos sin
cos

cos cos sin sin
cos

cos
cos

T G T G

T G N
N G T

N G G

G GN

N G

αβ α
β

β α
α β

αα β
β

α β α β
β

α β
β

− = ⇒ =  ⇒
− + = 

⇒ = − ⇒

⇒ = − ⇒

−
⇒ = ⇒

+
⇒ =

,                                            (13) 

În continuare vom rezolva problema cu ajutorul teoremei lui Lamy, Teorema lui 
Lamy conform figurii 5 este dată de relația: 

( ) ( ) ( )0 0 0sin 90 sin 90 sin 180
N G T
α β β α

= =
 + + − − 

,                      (14) 

dar: 

( )
( )

( ) ( )

0

0

0

sin 180 sin

sin 90 cos

sin 90 cos

α α

β β

α β α β

− =

− =

 + + = + 
, 



 

Fig. 5. Forțele concurente 

Rezultă că: 

( )cos cos sin
N G T
α β β α

= =
+

,                                                               (15) 

de unde avem că: 

( )
( )cos sin;

cos cos cos sin cos cos
N G T GN G T G

α β α
α β β β α β β

+
= ⇒ = = ⇒ =

+
,               (16) 

În ambele cazuri s-a obținut același rezultat. 
 

Problema 3 
O sferă de greutate G  se sprijină în 

punctele A și B pe două plane fixe, 
înclinate cu unghiurile α și β față de 
orizontală. Se cere să se afle reacțiunile în 
punctele de contact (fig. 6, a). 

Rezolvare: 
Ca și la problema precedentă vom 

rezolva mai întâi problema punând 
condițiile de echilibru din statică. 

Conditiile scalare de echilibru față 
de axele sistemului de referință ales sunt 
(fig. 6, b): 

 
a)                                           b) 

Fig. 6. Sfera și forțele la care este supusă 

0; sin sin 0

0; cos cos 0
i A B

i A B

X N N

Y N N P

α β

α β

= − =

= + − =
∑
∑

,                                                         (17) 

de unde prin rezolvarea sistemului (17) obținem: 

( ) ( )

( )

sinsin sin 0
sin

cos cos
sinsin cos cos sin

sin sin
sin

cos sin sin cos sin
sin

A B A B

A B

B B A

B B

N N N N

N N P

N N P N P

N P N P

βα β
α

α β
ββ α β α

α α β
α

α β α β α
α β

− = ⇒ =  ⇒ + = 
⇒ + = ⋅ ⇒ ⇒ =

+


⇒ + = ⇒ = + 


,        (18) 

În continuare vom rezolva problema cu ajutorul teoremei lui Lamy, Teorema lui Lamy 
conform figurii 7 este dată de relația: 

( ) ( ) ( )0 0sin sin 180 sin 180
A BN NP

α β β α
= =

+ − −
,                              (19) 

dar: 
( )
( )

0

0

sin 180 sin

sin 180 sin

α α

β β

− =

− =
, 

Rezultă că: 

( )sin sin sin
A BN NP

α β β α
= =

+
,                                                (20) 

 
Fig. 7. Forțele 

concurente 

de unde avem că: 

( ) ( ) ( ) ( )
sinsin ;

sin sin sin sin sin sin
A A

B A
N NP PN P N P βα
α α β α β β α β α β
= ⇒ = = ⇒ =

+ + + +
,              (21) 

În ambele cazuri s-a obținut același rezultat. 



 
Problema 4 
O tijă neomogenă al cărei centru de greutate se află la distanțele a și respectiv b față de capete, se sprijină pe 

două plane înclinate cu unghiurile α și respectiv β față de orizontală. Considerând că la contactul capetelor tijei cu 
planele înclinate nu există frecare și că planul vertical ce conține tija este perpendicular pe muchia orizontală comună de 
la baza planelor înclinate, se cere să se determine unghiul θ format de tijă cu orizontala în poziția de echilibru precum și 
valoarea forțelor de reacțiune (fig. 8). 

Rezolvare: 
Echilibrul momentelor celor trei forțe ( , ,S G R ) 

impune ca suporturile lor să fie concurente într-un punct 
(punctual O′  din figură). În acest punct se formeaza unghiuri 
egale cu cele ale planelor inclinate (α și β ca unghiuri cu 
laturile perpendiculare). 

Pentru determinarea unghiului θ avem nevoie de 
teorema următoare, care este foarte utilă în rezolvarea unor 
probleme de statică. 

Dacă P este un punct de pe baza AB a unui triunghi 
ABC care împarte această bază în raportul PA/PB = m/n, 
respectiv dreapta CP împarte unghiul C în două părți notate 
cu α și β, atunci: 

 
Fig. 8. Sprijinirea tijei 

( ) ( )m n ctg mctg nctg sau m n ctg nctgA mctgBθ α β θ+ = − + = − ,           (22) 
unde θ este unghiul CPB. 

Conform relației (22) pentru cazul din problemă putem scrie: 
( )a b ctg O PA bctg actg cu ctg O PA tgβ α θ′ ′+ = − =  ,                (23) 

și astfel se determină unghiul θ, obținând: 

( )
sin cos sin cos

sin sin
b atg

a b
α β β αθ

α β
−

=
+ ⋅

,                                 (24)  
Fig. 9. Împărțirea bazei 

Pentru determinarea forțelor de reacțiune în baza teoremei Lamy avem: 

( )sin sin sin
R S G
β α α β
= =

+
,                                                                  (25) 

din care se pot exprima reacțiunile R și S în funcție de G, α și β. Este de remarcat faptul că R și S nu depind de unghiul 
θ. 

Problema se poate rezolva și cu ajutorul condițiilor ,,clasice" de echilibru. Anularea rezultantei forțelor se scrie 
astfel: 

cos cosR S Gα β+ =  (pe verticală),   sin sinR Sα β= , (pe orizontală).                              (26) 
Anularea momentului forțelor (în raport cu centrul de greutate P) ne dă: 

( ) ( )cos cosRa Sα θ β θ− = + .                                                                (27) 
Ultima relație ni-1 determină pe θ iar primele două pe R și S. Reactiunile sunt: 

( ) ( )
sin sin,

sin sin
R G S Gβ α

α β α β
= =

+ +
.                                                          (28) 

și nu depind de localizarea centrului de greutate pe bară și nici de unghiul θ al echilibrului. 
 

Concluzii 
Teorema lui Lamy este relația dintre trei forțe coplanare, concurente și necoliniare și unghiurile acestora. 
Importanța sa este că oferă o metodă simplificată de analiză și de predicție a comportamentului forțelor în 

diferite structuri, ajutând la proiectarea și optimizarea componentelor mecanice. 
Teorema lui Lamy presupune că forțele sunt coplanare, concurente, iar sistemul este în echilibru static. 
Teorema lui Lamy este aplicabilă în mod specific sistemelor de forțe coplanare, concurente, cu trei forțe. Nu este 

valabil pentru sisteme de forțe neconcurente sau sisteme cu mai mult sau mai puțin de trei forțe. 
Teorema lui Lamy este limitată la trei forțe concurente într-un sistem coplanar. Teorema lui Lami nu se aplică 

sistemelor cu mai mult de trei forțe sau forțe care acționează în spațiul tridimensional. 
Teorema lui Lamy oferă o metodă simplificată pentru analiza sistemelor de forțe coplanare prin reducerea 

numărului de ecuații necesare pentru echilibru. Este deosebit de util atunci când aveți de-a face cu forțe concurente care 
acționează asupra unui corp rigid. 

Prin exemplele analizate s-a subliniat importanța folosirii acestei teoreme în rezolvarea unor probleme de 
echilibru static, respectându-se condițiile de aplicare a acestei teoreme. 
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Rezumat 

Modelul mecanic pentru ilustrarea sofismului lui Aristotel este denumit cu titlul ,,Roata lui Aristotel”. În lucrare 
sunt prezentate aspecte privind modelul mecanic pentru ilustrarea sofismului lui Aristotel. 

 
Cuvinte cheie 

Sofism, model mecanic 
 

1. Introducere 
Un sofism este un raționament corect în aparență, dar fals în realitate. Paralogismul este un sofism involuntar 

(neintenționat). 
Sofismul este un raționament care, din punct de vedere formal, este corect, dar greșit din punctul de vedere al 

conținutului. Spre deosebire de paralogism, care este un raționament fals, dar făcut din neștiință, fără intenția de a 
induce în eroare, sofismul se bazează pe ambiguitate, pe echivoc, pe aspecte neesențiale, tocmai pentru a induce în 
eroare auditoriul, în mod premeditat. 

,,Roata lui Aristotel" este un model mecanic conceput pentru a ilustra sofismul atribuit lui Aristotel, că: toate 
cercurile au aceeași lungime (!). 
 

2. Modelul mecanic pentru ilustrarea sofismului lui Aristotel. 
Modelul constă, în fond, din două roți solidare, cu aceeași axă și de raze diferite. Ele se vor învârti pe câte o șină, 

acestea fiind, bineînțeles, paralele (fig. 1). 

 
Fig. 1. Modelul cu roțile solidare 

 
Transpunând în limbaj geometric, circumferințele celor două roți sunt cercurile Cl și C2, care se vor mișca ca un 

tot pe tangentele lor, T1U1 și, respectiv, T2U2, duse în punctele T1 și T2 situate pe aceeași raza OTl (fig. 2). 
Presupunind ca cercul C1, rostogolindu-se pe dreapta T1U1, efectuează o rotație completă, în urma căreia punctul 

T1 ocupa pozitia 1T ′  atunci cercul C2 descrie, de asemenea, o rotație completă, iar punctul T2 ocupa pozitia 2T ′  pe raza 

1O T′ ′  care este paralela 1OT  (deoarece amândouă sunt perpendiculare pe T1U1). De aici se deduce că: 

1 1 2 2T T T T′ ′= ,                                                                                  (1) 
adică ambele cercuri au parcurs, la o rotație completă, drumuri egale, deci au aceeași lungime, și, întrucât cercurile C1 și 
C2 sunt absolut arbitrate, rezultă că toate cercurile au aceeași lungime (!) 

 
Fig. 2. Transpunerea modelului în limbaj geometric 

 
Evident, s-a ajuns la o absurditate; unde este greșeala? 

 
3. Descoperirea greșelii de raționament 

mailto:bogdandaniel576@gmail.com
https://ro.wikipedia.org/wiki/Ra%C8%9Bionament
https://ro.wikipedia.org/wiki/Sofistul_(Platon)


Reținând că un sofism matematic este un raționament corect din punct de vedere formal, dar greșit din punct de 
vedere al conținutului, bazându-se pe un echivoc, pe o greșeală ascunsă sau pe utilizarea aspectelor neesențiale ale 
fenomenelor - vom recunoaște că partea slabă a raționamentului făcut în enunț e considerarea caracterului vag al 
expresiei rostogolire (fenomenului de rostogolire) pe o dreaptă. 

Din punct de vedere cinematic, prin rostogolire fără alunecare a unui cerc pe o dreaptă se înțelege că cercul se 
mișcă astfel încât, în orice moment, el este tangent la dreaptă și că punctul de tangență (numit centru instantaneu de 
rotație) are, în acel moment, viteza nulă; urmează de aici că viteza oricărui punct legat de cerc - nu neapărat de pe 
circumferință - este, în fiecare moment, aceea pe care ar avea-o dacă cercul s-ar roti în jurul centrului instantaneu de 
rotație, iar direcția acestei viteze este perpendiculară pe dreapta care unește punctul considerat cu acest centru. 

O dată precizat înțelesul expresiei rostogolire, de-acum devine clar că, dacă unul dintre cercurile solidar legate se 
rostogolește, celălalt nu se rostogolește. 

Într-adevăr, menținând afirmația că, de exemplu, cel mai mare dintre cercurile concentrice se rostogolește fără 
alunecare pe dreapta T1Ul (v. fig. 2), cu siguranță cel mai mic nu se rostogolește la fel pe dreapta T2U2, deoarece, dacă și 
cercul mic s-ar rostogoli fară alunecare, în momentul în care centrul comun al cercurilor se găsește în 0", figura în 
mișcare ar avea, în acelasi timp, două centre instantanee de rotație, P1 și P2, și atunci viteza punctului 1T ′  (poziția 
punctului T1 când cercurile se rotesc cu un anumit unghi) ar fi orientată perpendicular atât pe 1 1PT ′ , cât și pe 2 1P T ′  - 
ceea ce este imposibil. 
 

4. Exemplu de raționament corect 
Două roți solidare de raze R și r (fig. 3) sunt antrenate simultan cu două cremaliere, imprimându-se punctelor A 

și B vitezele cunoscute 1 2v v . Să se determine poziția centrului instantaneu de rotație, viteza unghiulară instantanee și 
viteza centrului comul al celor două roți. 

Se prezintă în continuare rezolvarea. 
Se găsește poziția centrului instantaneu de rotație ținând cont că distribuția de viteze 

față de acest punct este aceeași ca la mișcarea de rotație. 
Din asemănarea triunghiurilor formate rezultă: 

( )2

1 2

v R r
IB

v v
+

=
−

,                                                           (2) 

Cu poziția lui I determinată, rezultă: 
2 1 2v v v

IB R r
ω

−
= =

+
,                                                         (3) 

și 
1 2

O
v R v r

v IO
R r

ω
+

= =
+

,                                                    (4) 
 

Fig. 3. Roțile solidare 
antrenate simultan 

 
Concluzii 
Dacă sofiştii (“specialişti” în “a şti”), în antichitate foloseau sofismul ca o redutabilă “armă” retorică, în prezent, 

apelul la sofism, în diverse contexte comunicaţionale, are un scop precis, acela de a induce în eroare interlocutorul, 
elementul comun între antici şi moderni fiind indiferenţa faţă de adevăr, faţă de principiile etice şi orgoliul de a avea 
întotdeauna dreptate. 

Deși termenul de sofism poate părea arhaic, influența sa se regăsește chiar și în limbajul nostru cotidian. 
Înțelegerea sa corectă ne ajută să identificăm și să evităm argumentațiile înșelătoare. 

În era informației, sofismele pot lua forme noi, adesea îmbrăcate în argumente aparent logice. Recunoașterea 
acestora necesită o minte critică și o bună cunoaștere a logicii. 

Identificarea sofismelor în discuții, dezbateri sau pe rețelele sociale poate îmbunătăți claritatea comunicării și 
autenticitatea argumentelor. 

Aristotel a întemeiat și sistematizat domenii filosozice ca logica, științele naturii, metafizica, etica și estetica. 
Organizarea cunoașterii în acest sistem a fost un punct de referință în civilizația europeană până la sfârșitul secolului al 
XVII-lea. 

A rafinat învățăturile lui Socrate privind gândirea critică sistematică și folosirea întrebărilor pentru a stabili 
adevărata natură a realității dincolo de felul în care lucrurile apar la prima privire 
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Rezumat: 
 Lucrarea analizează distribuția tensiunilor în supape fluture biplane utilizate în instalații industriale avansate. Sunt 
identificate zonele critice de solicitare ale discului și carcasei, în funcție de condițiile de presiune și montaj. Studiul are 
ca scop optimizarea comportamentului mecanic și creșterea fiabilității în exploatare. Se propun soluții constructive 
aplicabile în faza de proiectare. Rezultatele pot fi extinse în sisteme de reglare moderne din domeniul hidraulic și 
energetic. 
Cuvinte cheie: 
 Analiză tensională, presiune industrială, optimizare structurală 
 
 1. Introducere 
 Supapele fluture biplane sunt componente esențiale în instalațiile industriale moderne, având rolul de a regla, izola 
sau controla fluxul de fluide printr-un mecanism simplu, dar eficient. Acestea sunt caracterizate printr-o construcție 
simetrică, cu un disc central care se rotește în jurul unui ax, permițând o deschidere rapidă și un control precis asupra 
debitului. 
 Datorită configurației biplane, aceste supape oferă avantaje semnificative în ceea ce privește distribuția eforturilor 
mecanice, stabilitatea în exploatare și rezistența la presiuni ridicate. Sunt utilizate frecvent în rețele de apă, instalații 
industriale de proces, sisteme energetice și circuite hidraulice, unde fiabilitatea și siguranța operațională sunt prioritare. 
 Analiza tensiunilor care apar în structura supapei în timpul funcționării este esențială pentru validarea soluțiilor 
constructive, prevenirea cedărilor mecanice și optimizarea comportamentului în condiții de solicitare reală. Această 
lucrare urmărește investigarea acestor tensiuni printr-o abordare inginerească, cu accent pe aplicabilitatea practică în 
proiectarea și utilizarea supapelor fluture biplane pentru aplicații industriale avansate. 
 
 2. Scopul lucrării 
 Scopul principal al acestei lucrări este de a evidenția modul în care tensiunile generate în timpul funcționării 
influențează comportamentul mecanic al supapelor fluture biplane utilizate în aplicații industriale. Printr-o analiză 
structurată, se urmărește identificarea zonelor critice supuse solicitărilor maxime, în condiții reale de lucru. 
 Lucrarea își propune să ofere o bază de evaluare tehnică ce poate fi utilizată în fazele de proiectare, dimensionare 
și optimizare a acestor supape. De asemenea, sunt urmărite corelarea între forma geometrică a componentelor și distribuția 
tensiunilor, precum și evidențierea potențialelor puncte de cedare. 
 Prin această abordare, se dorește sprijinirea procesului decizional în alegerea materialelor, alăturărilor constructive 
și a soluțiilor tehnice adecvate în vederea creșterii fiabilității și durabilității echipamentelor utilizate în instalațiile 
industriale moderne. 
  

3. Descrierea zonei/obiectivului studiat 
Obiectul de studiu al acestei lucrări este o supapă fluture de tip biplan, utilizată în instalații industriale destinate 

transportului de fluide sub presiune. Supapa este compusă dintr-un corp cilindric, un disc mobil biplan montat central pe 
un ax de rotație și elemente de etanșare. Configurația constructivă permite acționarea rapidă și un control eficient al 
debitului prin simpla rotire a discului la un unghi de 90° față de axul conductei. 
Zona supusă analizei structurale este formată din: 

• discul supapei – element principal de închidere, expus direct la presiunea fluidului; 
• axul de acționare – care transmite cuplul mecanic și este supus la torsiune și îndoire; 
• corpul supapei – care preia reacțiunile mecanice din montaj și distribuie presiunea către pereții exteriori. 

Geometria biplană a discului introduce o particularitate importantă în distribuția tensiunilor, întrucât generează 
variații în comportamentul mecanic în funcție de poziția discului, simetria structurală și condițiile de fixare. În plus, 
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factorii precum tipul de material, grosimea pereților, tipul de montaj (flanșat sau cu inserție), presiunea fluidului și 
temperatura de funcționare pot influența semnificativ starea de tensiune internă. 

Obiectivul analizei este identificarea acestor zone vulnerabile, în special în punctele de trecere între disc și ax, în 
colțurile interioare ale carcasei și în zonele de etanșare, acolo unde se pot acumula tensiuni concentrate care pot conduce 
la deformări sau cedări în regim de solicitare repetitivă. 
 

 
Fig. 1. Reprezentare tehnică a unei supape fluture biplane în vedere ortogonală 

 
Imaginea ilustrează construcția geometrică a unei supape fluture biplane utilizate în sisteme industriale. Sunt 

prezentate proiecțiile frontale, laterale și secționate ale ansamblului, evidențiind componentele principale: corpul supapei, 
discul biplan central, axul de acționare (arborele discului) și arborele de cuplare la conducta principală. Dimensiunile 
constructive – inclusiv diametrul nominal (560 mm), lungimea totală (1500 mm) și grosimile pereților – sunt esențiale 
pentru analiza distribuției de tensiune în zonele critice. Forma conică de racordare și zona flanșată sugerează 
adaptabilitatea la conducte industriale sub presiune înaltă. Reprezentarea este relevantă pentru studiul comportamentului 
mecanic al supapei sub sarcini distribuite și concentrări de eforturi. 

 

 
Fig. 2. Reprezentare izometrică a unei supape fluture biplane 

 
Imaginea prezintă o vedere izometrică a unei supape fluture biplane, evidențiind clar elementele principale ale 

construcției: carcasa flanșată, discul rotativ cu profil biplan și axul de acționare central. Geometria simetrică a discului 
permite echilibrarea eforturilor în timpul închiderii și deschiderii, reducând solicitările asimetrice asupra lagărelor. 
Dispunerea circulară a găurilor de prindere sugerează o conectare flanșată la un sistem conductiv, iar forma constructivă 
sprijină analiza eficientă a distribuției tensiunilor și comportamentul la presiuni variabile. Reprezentarea tridimensională 
este utilă pentru înțelegerea configurației funcționale și a modului în care se transmit forțele în ansamblu. 



4. Materiale și metode de cercetare 
Studiul a fost realizat pe un model constructiv de supapă fluture biplană cu diametrul nominal de 560 mm, 

destinată aplicațiilor industriale cu regimuri de presiune ridicată. Obiectivul a constat în identificarea distribuției 
tensiunilor și a comportamentului mecanic general al ansamblului supapă-disc-corp în condiții reale de lucru. 

 
4.1 Materiale 
Elementele principale analizate au fost realizate din: 

• Corp supapă: fontă ductilă sau oțel turnat (în funcție de aplicație), 
• Disc biplan: oțel inoxidabil (pentru compatibilitate chimică și rigiditate), 
• Ax de acționare: oțel tratat termic (pentru rezistență la torsiune și oboseală). 

Materialele au fost selectate în funcție de condițiile de exploatare: presiune interioară, temperatură de funcționare, 
vibrații și cicluri de manevrare. 

 
4.2 Metoda de analiză 
Modelul geometric al supapei a fost transpus într-o configurație tehnică cu parametri dimensionali exacți, pe baza 

desenelor de ansamblu și a secțiunilor caracteristice (vezi Fig. 1 și Fig. 2). Studiul s-a concentrat pe următoarele aspecte: 
• identificarea zonelor structurale vulnerabile, precum zona de racord disc–ax și zona de sprijin pe flanșe; 
• evaluarea comportamentului la solicitări concentrate și distribuite, în special presiune interioară axială și 

momente de torsiune; 
• luarea în considerare a rigidității discurilor și a influenței acestora asupra distribuției de eforturi. 

Pentru analiza statică s-au utilizat metode inginerești clasice, prin modelarea solicitărilor și aplicarea relațiilor de 
echilibru pentru discuri supuse presiunii închise, completate de observații din documentații similare și testări de referință. 
Datele au fost corelate cu configurațiile constructive pentru validarea comportamentului mecanic estimat. 
 

 
Fig. 3. Reprezentare discretizată a configurației supapei biplane pe zone de analiză 

 
Imaginea prezintă discretizarea geometrică a componentelor principale ale supapei fluture biplane, utilizată pentru 

evaluarea comportamentului mecanic în regim static. Se disting patru zone: peretele frontal al carcasei (t = 50 mm), 
segmentul median al corpului (t = 40 mm), planul discului (t = 40 mm) și flanșa de ieșire (t = 60 mm), fiecare reprezentată 
în sistemele de coordonate corespunzătoare (x, y, z). Fiecare zonă a fost împărțită în elemente dreptunghiulare pentru 
identificarea tensiunilor locale și modelarea variațiilor de grosime. Numerotarea nodurilor permite localizarea precisă a 
punctelor analizate în corespondență cu studiul tensiunilor. Acest model este esențial pentru corelarea geometriilor reale 
cu rezultatele analitice și contribuie la delimitarea clară a zonelor supuse la solicitări maxime. 
 

5. Rezultate și discuții 
Analiza efectuată asupra configurației supapei fluture biplane a evidențiat o serie de aspecte relevante în ceea ce 

privește comportamentul mecanic al componentelor supuse presiunii. Zonele investigate includ discul biplan, arborele de 
acționare și pereții laterali ai carcasei, unde s-au remarcat diferențe semnificative în distribuția tensiunilor și a deplasărilor. 
În urma modelării, s-au observat următoarele: 

• Valorile maxime de tensiune apar în zona de prindere a discului pe ax, unde rigiditatea este scăzută și apare o 
acumulare de solicitări concentrice; 

• Discul biplan, deși prezintă o simetrie geometrică, dezvoltă tensiuni diferențiate între cele două planuri, 
influențate de unghiul de deschidere și de distribuția neuniformă a presiunii; 

• Pereții carcasei, în special în zona flanșelor, prezintă deformații elastice moderate, în corelație cu grosimea 
variabilă a materialului (conform Fig. 3); 

• Se observă o deplasare axială a discului în funcție de poziția de închidere, ceea ce sugerează necesitatea unei 
rigidizări suplimentare a prinderii centrale. 



Tabelul de mai jos oferă un exemplu de interpretare numerică pentru punctele selectate în model (valorile 
exprimate în cm): 
 

Tabelul 1. Valori ale deplasărilor și grosimii pereților în puncte caracteristice ale supapei fluture biplane 
Punct analizat Deplasare ax u [cm] Deplasare radială w [cm] Grosime pereți [mm] 

45 (disc) -0,0016 0,0634 40 
46 (carcasă) 0,0156 0,1087 50 

50 (extremitate disc) -0,0027 0,0039 40 
54 (flanșă) 0,0038 0,0001 60 

 
Rezultatele obținute indică faptul că soluțiile constructive actuale sunt eficiente, dar pot fi optimizate prin: 

• rigidizarea zonei de legătură disc–ax, 
• omogenizarea grosimii pereților în zonele cu variații de tensiune, 
• ajustarea toleranțelor pentru reducerea jocurilor mecanice și a efectului de oboseală. 

 
6. Concluzii 
Studiul a evidențiat comportamentul mecanic al unei supape fluture biplane supusă solicitărilor generate de 

presiunea internă, punând în evidență zonele critice de tensiune și deplasare. Analiza a confirmat faptul că cele mai 
vulnerabile puncte sunt racordurile dintre disc și arborele de acționare, precum și marginile discului în contact cu fluxul 
de fluid. 

Geometria biplană oferă avantaje clare în ceea ce privește simetria eforturilor și stabilitatea în funcționare, însă 
necesită o proiectare atentă în zonele de concentrare a solicitărilor. Comportamentul elastic observat în pereții carcasei și 
în flanșe este acceptabil în limitele industriale, dar poate fi optimizat prin ajustarea grosimii și forma profilului. 

Lucrarea contribuie la o mai bună înțelegere a distribuției tensiunilor în astfel de componente și oferă un cadru 
tehnic valoros pentru îmbunătățirea proiectării, cu aplicabilitate directă în instalații de apă, sisteme energetice și circuite 
de reglare industrială. 

 

 
Fig. 4. Diagrama deplasărilor nodale în planul axial al supapei fluture biplane 

 
Imaginea prezintă distribuția deplasărilor în puncte cheie (noduri) ale discului și carcasei unei supape fluture 

biplane. Sunt evidențiate două componente ale deplasării: 
• u [cm] – deplasarea axială, 
• w [cm] – deplasarea radială. 

Deplasările sunt exprimate în centimetri, iar variațiile indică deformări structurale diferite în funcție de poziția 
nodurilor. Punctele 45–50 și 54–57 definesc conturul exterior al discului și al pereților laterali, în timp ce nodurile 46–48 
arată comportamentul zonei centrale de racord. Se observă o simetrie parțială, dar și o ușoară asimetrie de comportament 
între partea superioară și inferioară a structurii, generată de interacțiunea dintre presiune și sistemul de prindere. Aceste 
valori au fost utilizate în analiza comparativă din Tabelul 1 pentru a valida nivelurile de solicitare în regim staționar. 
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